a2 United States Patent

US009257101B2

(10) Patent No.: US 9,257,101 B2

Hendry et al. 45) Date of Patent: Feb. 9, 2016
(54) METHOD FOR REDUCING GRAPHICS (56) References Cited
RENDERING FAILURES
U.S. PATENT DOCUMENTS
(75) Inventors: Ian I.LIendry, San Jose, CA (US); Jeffry 4,862,392 A * 8/1989 SteiNerocoovromrenne. 345/427
Gonion, Campbell, CA (US); Jeremy 5459,825 A 10/1995 Anderson et al.
Sandmel, San Mateo, CA (US) 5,543,824 A * 8/1996 Priemetal. ...ccocoovnnnnn. 345/539
5,594,854 A * 1/1997 Baldwin et al. 345/441
s . . 5,657,478 A * 8/1997 Reckeretal. 345/503
(73) Assignee: APPLE INC., Cupertino, CA (US) 5682520 A 10/1997 Hendry f al.
5,727,192 A * 3/1998 Baldwinc.cccceen 345/522
(*) Notice: Subject to any disclaimer, the term of this 6,094,726 A 7/2000 Gonion et al.
patent is extended or adjusted under 35 g%ég’gig g} * 55;; %88} g‘mg;;t :11'1 """"""""" 345/506
1282, endry et al.
U.S.C. 154(b) by 0 days. 6,587,116 Bl 7/2003 Hendry et al.
6,806,880 B1* 10/2004 Mukherjecetal. 345/506
(21) Appl. No.: 13/620,053 6,928,543 B2 82005 Hendry et al.
7,019,758 B2 3/2006 Hendry et al.
o 7,336,285 B2 2/2008 Hendry et al.
(22) Filed: Sep. 14,2012 7380.116 B2 52008 Hendry f al.
7,395,419 Bl 7/2008 Gonion
2003/0227460 Al* 12/2003 Schinnerer 345/539
US 2013/0009975 Al Jan. 10, 2013 2004/0179018 Al* 9/2004 Sabellaetal. ... 345/536
(Continued)
Primary Examiner — Stephen R Koziol
Related U.S. Application Data Assistant Examiner — Robert Craddock
(63) Continuation of application No. 12/313,718, filed on ~ (74) Attorney, Agent, or Firm — Fletcher Yoder PC
Nov. 24, 2008, now Pat. No. 8,310,494. (57) ABSTRACT
(60) Provisional application No. 61/101,634, filed on Sep. A methpd and electronic deYice employing the method of
30. 2008. processing a frame of graphics for display is provided that
’ includes developing a frame in a first software frame process-
ing stage following a first vertical blanking (VBL) heartbeat,
(51) Int. CL issuing a command indicating the first stage is complete, and
G09G 5/399 (2006.01) performing a final software frame processing stage without
G09G 5/395 (2006.01) waiting for a subsequent VBL heartbeat. The method may
GO6T 1720 (2006.01) alternatively include performing the final software frame pro-
52) U.S.CL cessing stage regardless as to whether a target framebuffer is
(52) g stage reg rg
CPC . G09G 5/395 (2013.01); GO6T 1/20 (2013.01) available, performing all but final hardware frame processing
(58) Field of Classification Search stages regardless as to whether the target framebuffer is in

CPC .o, GO09G 5/399; GO6T 1/20
USPC ittt 345/539
See application file for complete search history.

use, and performing the final hardware processing stage if the
target framebuffer is not in use.

15 Claims, 8 Drawing Sheets

78—VBL # 0 1 2 3 4 5 6 7

76— sTePS \TIME __Oms 6ms 32

ms 48ms 64ms 80ms 96ms 112ms

82 148 s 188 192
 RocEssiNG LU RPN (W LI B I T
STAGE 1 g S R “o M
84~~sw FRAME E . 176\5) | , | 104 ; ;
PROCESSING A | Y T | I = 2 R =2
STAGE N i i i i i i i
0 | P | P
85~Hw FRAME G A e A e 11
PROCESSING STAGE H 2 EH A EH K
8 182 fi o180 i A 3
N i 1821 ' \ \
HW FRAME P . sty 5]
PROCESSING STAGE 1sa—H \|_.[i FH FH
N \):184 N
s ~. \\~ \\\N
156+, N 186 s 90192

A B

9
N\ DISPLAY FraME # L1 2 3 1 1 _(B A =
J FRRTEBUFFER, FRATESUFFER RAMEBLFFERFRAMERLFF R FRAVEBUFFER FRAVEBUFFER FRAVEBLFFER FRAREDD
i i i i

S
TARGET
FRAMEBUFFER —*

1
[A

\172

US 9,257,101 B2
Page 2

(56)

References Cited

U.S. PATENT DOCUMENTS

2005/0128206 Al*
2006/0004996 Al
2008/0034238 Al
2008/0114968 Al
2008/0114969 Al
2008/0165083 Al
2008/0165202 Al

6/2005
1/2006
2/2008
5/2008
5/2008
7/2008
7/2008

Fujimotoccccoveennne
Gonion

Hendry et al.

Gonion et al.

Gonion et al.

Brodersen et al.
Brodersen et al.

345/539

2008/0229076 Al
2008/0276064 Al
2008/0276220 Al
2008/0276261 Al
2008/0276262 Al
2008/0288744 Al
2008/0288745 Al
2008/0288754 Al
2008/0288759 Al

* cited by examiner

9/2008
11/2008
11/2008
11/2008
11/2008
11/2008
11/2008
11/2008
11/2008

Gonion

Munshi et al.
Munshi et al.
Munshi et al.
Munshi et al.
Gonion et al.
Gonion et al.
Gonion et al.
Gonion et al.

U.S. Patent Feb. 9, 2016 Sheet 1 of 8 US 9,257,101 B2

32~
DISPLAY
30
DiSPLAY |/
22\ CONTROLLER[™
I W i
[
_ | | 1 |HW FRAME(|
24—7}{ FRAMEBUFFER | | | | PROCESSING | |
| | [_STAGE N [34
|
26 ~1~1| FRAMEBUFFER || |20/ . ! \
| B Ul . | BLANKING
| | Trw Frame] | INTERRUPT
28—~ FRAMEBUFFER || f——| PROCESSING [
| C | [1| _STAGEL | |
S Sl)
MEMORY 18 jz
CPU

40\ 38\ 36\ \
NETWORK | | EXPANSION 170 | [Non-voLaTILE| 10
INTERFACE| |cARD /sLoT| | PORTS STORAGE

42

FIG. 1

U.S. Patent

Feb. 9, 2016 Sheet 2 of 8 US 9,257,101 B2

46

ON VBL HEARTBEAT, PERFORM J
SW FRAME PROCESSING STAGE 1

48

ISSUE COMMAND "DONE WITH J
SW FRAME PROCESSING STAGE 17

50
WITHOUT WAITING FOR VBL /
HEARTBEAT, PERFORM SW FRAME
PROCESSING STAGE N
52

SEND FRAME DATA TO GPU

FIG. 2

U.S. Patent Feb. 9, 2016 Sheet 3 of 8 US 9,257,101 B2

32\
DISPLAY
30
DISPLAY J
CONTROLLER
"IN USET b 00
29 REGISTER
\\ _/—16
————— f——— 1
e — .
| | | 1 [HW FRAME| |
241} FRAMEBUFFER | | | | PROCESSING | |
I I ; STAGE N | 34
|
26—\1\ FRAMEBUFFER I IZO-/ . |
| B Ll . I BLANKING
| | 1 [hw Frame] | INTERRUPT
28-\}\ FRAMEBUFFER I I PROCESSING [
| C || 1| _STAGEL | |
s L]
MEMORY 18 jz
CPU

40\ 38\ 36\ ‘\
NETWORK | | EXPANSION 170 | |NON-VOLATILE| 9%
INTERFACE | | cARD /sLoT| | PORTS STORAGE

42—

FIG. 3

U.S. Patent Feb. 9, 2016 Sheet 4 of 8 US 9,257,101 B2

f60

WITHOUT WAITING FOR TARGET
FRAMEBUFFER NOT TO BE "IN USE",
PERFORM SW FRAME PROCESSING

STAGE N AND SEND FRAME DATA TO GPU

, 62

WITHOUT WAITING FOR TARGET /
FRAME BUFFER NOT TO BE "IN USE",

PROCESS FRAME DATA USING FRAME
PROCESSING STAGE 1 TO STAGE N-1

\ CHECK WHETHER TARGET
FRAMEBUFFER IS IN USE

/70
66

YES DEFER FRAME
PROCESSING STAGE N
UNTIL BUFFER BECOMES

AVAILABLE
NO
PROCESS FRAME USING FRAME
PROCESSING STAGE N
\68

5(FIG. 4

US 9,257,101 B2

. M334NGINVH
” “ “ “ | _ | Sl s

b9 g by 0oy b g g gy

NN N I3 SN NN N e g,/

"¢ [¢ T 1 * 3INWd ::D_m_o/
06

|
N A
\ __ ._w._“._“_/
N

Sheet 5 of 8

Feb. 9, 2016

JOVLS ONISSI00dd
JNVH >>_._J

I 88

JOVLS ONISSI004d
JNVES MH_gg

S 14 €

N IDVIS
ONISSI004d
JAYES MS~_yg

\

_— -

i
i
1
|

_ |
9 | _

G 14

\
A}
AY

., \

i

" d_ w _J | M f _J [30VIS
_ “

" 911 ou 201 _

9NISSIV0Yd
INVEE MS—7g

d
4

—|<c

(]
(o))

U.S. Patent

SWZTI SWw9e sSwosg Swy9 Swgy swze swogr swo JAILN SddlS~—gq/

08
L 9 § 14 € 4 I 0 # 19A—38L

US 9,257,101 B2

Sheet 6 of 8

Feb. 9, 2016

U.S. Patent

_

!

1

!

!

!

!

1

1

| 39YLS ONISSIO0Nd
i INVES MHgg
1
1
1
!
!
!
!
1
!
!
!

¥ ¥344NgINvS
9 9I4 w:/ i)
" : . . m _ _ . §|_|_,H\
L A L A T T e e L e
:mm_zé_E:m_\éﬁ_EDa_zé_E:mm_>_§_E:mu_\,_%_ﬁ%m_zé_5%5_\,_,5E%mzs_m /7
g _, e AL 7 T # 3N avldsia N\
. 9€T ! 06
_ N N
_|@; 5 39VIS ONISSII0Yd
} m VA MHS
m ! . 88
ik

N J9V1S
ONISSIO0Hd
JNYES MS—yg

L

. ,_\;._.._.._.._.._.._.._.._.._.._.._.._.._.._

e

I
i
i
i
i
i
i
i
i
i
|
\

”

a

T 39v1S
DNISSIO0Ud
INVEE MS —gg

=<

_f i

omﬂ 26

SWZIT mE_om sSwpg swy9 swgy swgg Swor swQ ANIL~ Sd3IS ~—g/

08
L 9 G 14 € 4 I 0 # 1aA~—28L

P I

US 9,257,101 B2

Sheet 7 of 8

Feb. 9, 2016

U.S. Patent

. ¥344ngINvY4
oF1
£ "9l hY <\\ 13941
: _ _ \ : . . . El\{
e ¢t v : J i & i ¥ i 2 : & : ¥
:mm_\éﬁ_E:ms_%_E:mmsé_ﬁ%mmzé_m_E:a_\,_E_EDa_\‘%_ﬁ&Da_%z_ﬁ%mm_zé /7
¢ | v | ¢ I 2 \, _ b ¢ | 1 7 WL avidsId N\
m/ A 3 i\ i i i 06
1 / _ / _/ wm._”_/ wm._“_ _ _
I A TS A _ _ \
- | ! | 1 | i ! _ _ 39Y1S HNISSIO0Ud
| || | | | | | I |
S TP e T g ! INVES MH
P! I I P b i i
R i ' | i i 8
A B B B2 " ! 39Y1S HNISSII0Ud
I T R R _ : JNVHS MH
R %8
. 1 I 1 I i 1 I 1 i i
P : i " i b ! il i i
b . b o b N 39Y1S
_ ! | _ ! | _ ! | _ ! | _ ! | _ i i ONISSID0Nd
1 el el Ty 1 et _) _
LI L L o L i | 1 i JNYHS >>w{._um
P iy i P P i P i
Lo L b Lo L || Lo _
R R R B By R Py NS0
S) J g J ' I'g f_ v N ! It 2 J ! T A!
i i i i \mW_ i i i JNVES MS —7g
_ 0LTi LT i 0LT! 0LT i 091 i QGT | gy
1 1 1 1 1]
SwzIl swog swog swy9 swgl Swge Swgr swQ AWIL~ Sd3IS ~—9/
08
L 9 g 4 £ Z I 0 # 19A—38L

US 9,257,101 B2

Sheet 8 of 8

Feb. 9, 2016

U.S. Patent

. ¥344NaINYYA
2~ 8 Ol <\\ 3oL
i _ ! _ _ . i m Sn\{
/N S S RS B) g v
N3NV _ﬁ%mu_zé_mm%mu_\,_,%_ﬁ%a_%t_ﬁ%muzé_m_u%m_\,_% YE:E_\,_E 3ANGINY; d
Vo 8 8 0 A 1 ¢ | ¢ [1 # 3N ryidsid N\
¢61{ ™~ 0BTi . off " A LI m _ 06
LS So ! | !
“ NN | | i N
ol e] — i L —5T | | IDYLS DNISSI0Yd
i ; | | i : m FNYE MH
iy A ! ! ¢at i _ ' 88
[} 1 [| 1 1 1
IR i i
N_ " { e | " _|_H L " " J9VIS DNISSIO0Yd
v T P i i INVES MH~_gg
A b Lo !
| " | : ! : _ A N 39V1S
= = r 7 1 T Voo INISS300dd
_ 1 I C Iy Iy | 1 i JAVHd MS
SR i | 72 I8
1 1 11 11 11 i1 1 1 i
: 1 1 1 | | 1 : H Mmu(._uw
1 1 1 1 1 1
B iR i I mtinaUi el ONISSI00Yd
_ i i . N Y i N VS MS —gg
! ! _ 881! [ZA% 81 |
1 1 1 1 1 1 1
SWZII Swog Swog swy9 swgl swzs sSw9r swQ JWIL~ Sd3IS ~—9/
08
[9 G ¥ £ Z I 0 #19A—8L

US 9,257,101 B2

1
METHOD FOR REDUCING GRAPHICS
RENDERING FAILURES

This application is a continuation of U.S. application Ser.
No. 12/313,718, filed Nov. 24, 2008, entitled “Method for
Reducing Graphics Rendering Failures,” and further claims
benefit of Provisional Application Ser. No. 61/101,634, filed
Sep. 30, 2008, entitled “Method for Reducing Graphics Ren-
dering Failures” in the name of Ian Hendry et al.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to displaying
graphics on an electronic display screen and, more particu-
larly, to preparing graphics for display on an electronic dis-
play screen of an electronic device or portable computer
system.

2. Description of the Related Art

This section is intended to introduce the reader to various
aspects of art that may be related to various aspects of the
present invention, which are described and/or claimed below.
This discussion is believed to be helpful in providing the
reader with background information to facilitate a better
understanding of the various aspects of the present invention.
Accordingly, it should be understood that these statements are
to be read in this light, and not as admissions of prior art.

An electronic display screen for an electronic device often
displays a new frame of pixels each time the screen refreshes.
Each successive frame of pixels may be stored in a portion of
memory known as a framebuffer, which holds data corre-
sponding to each pixel of the frame. Before reaching a target
framebuffer, each frame is typically processed using both
hardware and software.

Often, a stage of frame processing will move forward when
the screen refreshes and sends a vertical blanking (VBL)
interrupt command, known as a VBL heartbeat. By synchro-
nizing to the VBL heartbeat, frame processing maintains an
orderly progression toward a target framebuffer. However, if
a particular stage of frame processing takes too long, a VBL
heartbeat may occur before the frame is ready to move to the
next stage of processing, and the frame may thus be delayed
or discarded. Additionally, hardware-based processing may
avoid processing a frame while a target framebuffer is in use.

An electronic device may employ multiple layers of frames
of pixels, which may be accumulated into a single layer for
display on the screen. At least one unique framebuffer may
correspond to each layer. Since each frame of each layer may
require frame processing prior to accumulation, a failure dur-
ing frame processing may be magnified, as more than one
layer may be affected.

SUMMARY

Certain aspects of embodiments disclosed herein by way of
example are summarized below. It should be understood that
these aspects are presented merely to provide the reader with
a brief summary of certain forms an invention disclosed and/
or claimed herein might take and that these aspects are not
intended to limit the scope of any invention disclosed and/or
claimed herein. Indeed, any invention disclosed and/or
claimed herein may encompass a variety of aspects that may
not be set forth below.

An electronic device is provided having circuitry config-
ured to efficiently process a frame of graphics for display. In
accordance with one embodiment, the electronic device
includes a display, memory circuitry with at least one frame-

10

25

35

40

45

50

55

2

buffer, display control circuitry communicably coupled to the
memory circuitry and the display, and a central processor
communicably coupled to the display control circuitry. The
central processor may be configured to run software for a first
software frame processing stage and software for a final soft-
ware frame processing stage. Software for the first software
frame processing stage may be configured to perform a first
stage in software graphics processing after the display out-
puts a vertical blanking heartbeat and to issue a command
indicating the first software frame processing stage is com-
plete. Without waiting for another vertical blanking heartbeat,
software for the final software frame processing stage may be
configured to perform a final stage in software graphics pro-
cessing as soon as the command is issued. Among other
things, the electronic device may be a notebook or desktop
computer, a portable media player, a portable telephone, or a
personal digital assistant.

In accordance with another embodiment, the electronic
device includes a display, memory circuitry comprising at
least one framebuffer, display control circuitry communica-
bly coupled to the display and the memory circuitry, at least
one central processor communicably coupled to the display
control circuitry, and at least one graphics processor commu-
nicably coupled to the memory circuitry and the at least one
central processor. The at least one central processor may be
configured to run software for a final software frame process-
ing stage regardless of whether a target framebuffer is in use.
The at least one graphics processor may also be configured to
conduct frame processing operations not involving rendering
to the target framebuffer regardless of whether the target
framebuffer is in use, and may be configured to conduct
rendering to the target framebufter if the target framebuffer is
not in use. The electronic device may include a network
interface, an expansion slot, or non-volatile storage, or any
combination thereof.

A technique for processing a frame of graphics is also
provided. In accordance with an embodiment, a method of
preparing a frame of graphics for display includes developing
a frame in a first software frame processing stage following a
first vertical blanking heartbeat, issuing a command indicat-
ing that the frame is available for further processing, and
preparing the frame for hardware graphics processing in a
final software frame processing stage without waiting for a
second vertical blanking heartbeat. The method may include
preparing the frame for hardware graphics processing in the
final software frame processing stage regardless of whether a
target framebuffer is in use and performing a first hardware
frame processing stage regardless of whether the target
framebuffer is inuse. Ifthe target framebufter is not in use, the
method may include rendering frame data into the target
framebuffer. If the target framebuffer is in use, the method
may include deferring rendering frame data into the target
framebuffer until the target framebuffer is no longer in use
(i.e., when a next vertical blanking heartbeat occurs). Ren-
dering frame data into the target framebuffer may include
checking a register which tracks whether the target frame-
buffer is in use to determine whether the target framebuffer is
in use.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects, and advantages of the
present invention will become better understood when the
following detailed description of certain exemplary embodi-
ments is read with reference to the accompanying drawings in
which like characters represent like parts throughout the
drawings, wherein:

US 9,257,101 B2

3

FIG. 1is a simplified block diagram of an electronic device
configured in accordance with an embodiment of the present
invention;

FIG. 2 is a flowchart depicting a method of processing a
frame of graphics using the electronic device of FIG. 1 in
accordance with an embodiment of the present invention;

FIG. 3 is a simplified block diagram of an electronic device
configured in accordance with another embodiment of the
present invention;

FIG. 4 is a flowchart depicting a method of processing a
frame of graphics using the electronic device of FIG. 3 in
accordance with an embodiment of the present invention;

FIG. 5 is a timing diagram illustrating a sequence of pro-
cessing a series of frames of graphics;

FIG. 6 is a timing diagram illustrating a sequence of pro-
cessing a series of frames of graphics;

FIG. 7 is a timing diagram illustrating a sequence of pro-
cessing a series of frames of graphics; and

FIG. 8 is a timing diagram illustrating a sequence of pro-
cessing a series of frames of graphics.

DETAILED DESCRIPTION OF SPECIFIC
EMBODIMENTS

One or more specific embodiments of the present invention
will be described below. These described embodiments are
only exemplary of the present invention. Additionally, in an
effort to provide a concise description of these exemplary
embodiments, all features of an actual implementation may
not be described in the specification. It should be appreciated
that in the development of any such actual implementation, as
in any engineering or design project, numerous implementa-
tion-specific decisions must be made to achieve the develop-
ers’ specific goals, such as compliance with system-related
and business-related constraints, which may vary from one
implementation to another. Moreover, it should be appreci-
ated that such a development effort might be complex and
time consuming, but would nevertheless be a routine under-
taking of design, fabrication, and manufacture for those of
ordinary skill having the benefit of this disclosure.

Turning to the figures, FIG. 1 illustrates an electronic
device 10 in accordance with an embodiment of the present
invention. The electronic device 10 may represent a computer
system, such as a desktop computer, a notebook computer, or
any other variation of computer system. Alternatively, the
electronic device 10 may represent a portable device, such as
aportable media player or a portable telephone. For example,
the electronic device 10 may be a model of an iPod® having
a display screen or an iPhone® available from Apple Inc.

The electronic device 10 may include one or more central
processing units (CPUs) 12. The CPU 12 may include one or
more microprocessors, such as one or more “general-pur-
pose” microprocessors, a combination of general and special
purpose microprocessors, and/or ASICS. For example, the
CPU 22 may include one or more reduced instruction set
(RISC) processors, such as a RISC processor manufactured
by Samsung, as well as graphics processors, video proces-
sors, and/or related chip sets. The CPU 12 may provide the
processing capability to execute an operating system, pro-
grams, user interface, graphics processing, and other desired
functions.

A memory 14 and a graphics processing unit (GPU) 16
communicate with the CPU 12. The memory 14 generally
includes volatile memory such as any form of RAM, but may
also include non-volatile memory, such as ROM or Flash
memory. In addition to buffering and/or caching for the
operation of the electronic device 10, the memory 14 may also

20

30

40

45

55

4

store firmware and/or any other programs or executable code
needed for the electronic device 10.

The GPU 16 of FIG. 1 may include one or more graphics
processors for processing a frame of graphics in a series of
stages. The graphics processors of the GPU 16 may perform
avariety of hardware graphics processing operations, such as
video and image decoding, anti-aliasing, vertex and pixel
shading, scaling, rotating, tile acceleration, and/or rendering
a frame of graphics data into memory. The series of graphics
processing stages may employ any of the above described
operations, alone or in combination, in any suitable order. For
a given application, such as providing a frame of video graph-
ics, the series of graphics processing stages may begin with a
first hardware frame processing stage (1) 18 and end with a
final hardware frame processing stage (N) 20, where N rep-
resents a total number of graphics processing stages
employed for the given application. Each of the hardware
frame processing stages of the GPU 16 may take place in one
or more multipurpose graphics processors or, alternatively,
may take place in one or more specialized graphics proces-
sors, such as a shader, video or image decoder, tile accelera-
tor, renderer, etc.

The CPU 12 may supplement hardware graphics process-
ing by providing initial frame data from software running on
the CPU 12 to the GPU 16. With the initial frame data, first
hardware frame processing stage (1) 18 may complete an
initial graphics processing step. Additionally, the CPU 12
may intervene to transfer frame data from one stage to the
next or may perform graphics processing in software.

Upon completion of final hardware frame processing stage
(N) 20, a completed frame of graphics is rendered into one of
the framebuffers 22 within the memory 14. Each of the frame-
buffers 22 occupies an area of memory reserved for the stor-
age of frame data. Accordingly, the framebutfers 22 may be
located in any suitable memory location, including, for
example, the memory 14 or dedicated video memory (not
shown) within the GPU 16. As depicted in FIG. 1, the elec-
tronic device 10 employs three distinct framebuffers 22,
allowing the graphics to be triple-buffered. Alternatively, the
electronic device 10 may employ a lower or higher number of
framebuffers 22 to achieve an appropriate level of graphics
buffering.

As depicted in the embodiment of FIG. 1, the electronic
device 10 employs triple-buffering of graphics. Accordingly,
the final hardware frame processing stage (N) 20 renders a
completed frame of graphics into a target framebuffer A 24,
framebuftfer B 26, or framebuffer C 28. Triple-butfering pro-
vides that when one of the three framebuffers 22 is in use for
display, the final stage N 20 may render frame data into either
of the remaining two framebuffers 22. Because graphics pro-
cessing may require a variable amount oftime to process each
frame, triple-buffering generally allows for a steady display
of frames despite variances in frame processing times.

A display controller 30 reads the contents of each of the
framebuffers 22 sequentially to obtain frames of graphics for
display on a display 32. First, the display controller 30 may
obtain a frame of graphics from the framebuffer A 24, before
sending the frame of graphics for additional processing or
directly to the display 32. The display 32 may be any suitable
display, such as a liquid crystal display (LCD), a light emit-
ting diode (LED) based display, an organic light emitting
diode (OLED) based display, a cathode ray tube (CRT) dis-
play, or an analog or digital television. Additionally, the dis-
play 32 may also function as a touch screen through which a
user may interface with the electronic device 10.

The display 32 displays the frame of graphics for a length
of time based on a refresh rate employed by the display 32.

US 9,257,101 B2

5

For example, at a refresh rate of 60 Hz, each frame of graphics
may be displayed for approximately 16.67 ms. To communi-
cate a start of the display of a new frame, the display control-
ler 30 sends a vertical blanking interrupt 34, also known as a
VBL heartbeat, to the CPU 12. The vertical blanking interrupt
34 allows software running on the CPU 12 to synchronize the
initial processing of a new frame of graphics with the display
of a previous frame of graphics.

The electronic device 10 of FIG. 1 may further include a
non-volatile storage 36, input/output (I/O) ports 38, one or
more expansion slots and/or expansion cards 40, and a net-
work interface 42. The non-volatile storage 36 may include
any suitable non-volatile storage medium, such as a hard disk
drive or Flash memory. Because of its non-volatile nature, the
non-volatile storage 36 may be well suited to store data files
such as media (e.g., music and video files), software (e.g., for
implementing functions on the electronic device 10), prefer-
ence information (e.g., media playback preferences), lifestyle
information (e.g., food preferences), exercise information
(e.g., information obtained by exercise monitoring equip-
ment), transaction information (e.g., information such as
credit card information), wireless connection information
(e.g., information that may enable media device to establish a
wireless connection such as a telephone connection), sub-
scription information (e.g., information that maintains a
record of podcasts or television shows or other media a user
subscribes to), as well as telephone information (e.g., tele-
phone numbers).

The expansion slots and/or expansion cards 40 may expand
the functionality of the electronic device 10, providing, for
example, additional memory, I/O functionality, or network-
ing capability. By way of example, the expansion slots and/or
expansion cards 40 may include a Flash memory card, such as
a Secure Digital (SD) card, mini- or microSD, CompactFlash
card, or Multimedia card (MMC). Additionally or alterna-
tively, the expansion slots and/or expansion cards 40 may
include a Subscriber Identity Module (SIM) card, foruse with
an embodiment of the electronic device 10 with mobile phone
capability.

To enhance connectivity, the electronic device 10 may
employ one or more network interfaces 42, such as a network
interface card (NIC) or a network controller. For example, the
one or more network interfaces 42 may be a wireless NIC for
providing wireless access to an 802.11x wireless network or
to any wireless network operating according to a suitable
standard. The one or more network interfaces 42 may permit
the electronic device 10 to communicate with other s utilizing
an accessible network, such as handheld, notebook, or desk-
top computers, or networked printers.

Turning to FIG. 2, a flowchart 44 represents a method of
preparing an initial frame of graphics using software running
on the CPU 12 in accordance with an embodiment of the
present invention. The preparation of the frame of graphics
may begin with a step 46, when the CPU 12 receive the
vertical blanking interrupt 34 from the display controller 30.
Subsequently, software running on the CPU 12 performs a
first software frame processing stage (1). The first software
frame processing stage (1) may generally involve developing
a rough outline of a frame of graphics in a software applica-
tion, but may additionally or alternatively involve any first
step appropriate to software graphics processing, such as
altering a prior frame or obtaining a frame from an external
data source. A target framebuffer A 24, framebuffer B 26, or
framebutfer C 28 may also be assigned during the step 46.

As indicated in a step 48, the software that performs the
first software frame processing stage (1) subsequently issues
acommand indicating that the first software frame processing

10

15

20

25

30

35

40

45

50

55

60

65

6

stage (1) has completed. The command may alert other soft-
ware running on the CPU 12 to immediately begin a next
software frame processing stage. In step 50, a final software
frame processing stage (N) begins without waiting for a sub-
sequent the vertical blanking interrupt 34.

Though the flowchart 44 depicts an embodiment having a
first software frame processing stage (1) and a final software
frame processing stage (N), it should be appreciated that
appropriate interim software frame processing stages may be
employed in alternative embodiments. For example, software
performing each interim software frame processing stage
may also issue a command indicating that the interim soft-
ware frame processing stage has completed, such that each
subsequent interim stage may begin immediately. When all
interim software frame processing stages have completed and
acommand has issued indicating that the last interim software
frame processing stage has completed, the process flow
returns to a step 50, and the final software frame processing
stage (N) begins.

In the step 50, software running on the CPU 12 performs
final software frame processing stage (N). Generally, the final
software frame processing stage (N) may involve developing
initial frame data for subsequent hardware graphics process-
ing. However, the final software frame processing stage (N)
may additionally or alternatively involve any final step appro-
priate to software graphics processing. It should be appreci-
ated that in alternative embodiments for which hardware
graphics processing is unavailable or undesirable, the final
software frame processing stage (N) may involve rendering a
completed frame of graphics into the target framebuffer A 24,
framebuffer B 26, or framebuffer C 28.

Continuing to view the flowchart 44 of FIG. 2, when the
final software frame processing stage (N) has completed, a
step 52 begins. Inthe step 52, software running on the CPU 12
sends initial frame data to the first hardware frame processing
stage (1) 18 in the GPU 16. The GPU 16 subsequently per-
forms desired hardware frame processing stages employed by
the electronic device 10 as described below, before rendering
the completed frame of graphics into the target framebuffer A
24, framebuffer B 26, or framebuffer C 28.

FIG. 3 depicts an electronic device 54 having circuitry to
track which of the framebuffers 22 is “in use” as the display
controller 30 accesses the framebuffer for displaying the con-
tents of the framebufter on the display 32. With the exception
of an “in use” register 56, the electronic device 54 includes
features which may perform in the same manner as those of
the electronic device 10 of FIG. 1. Accordingly, the above
descriptions of features of the electronic device 10 having the
same numerals also apply to the electronic device 54. To the
extent features of electronic device 54 vary from those of the
electronic device 10, such variations are noted below.

As will be appreciated, problems could result if the final
hardware frame processing stage (N) attempted to render a
completed frame of graphics into one of the framebufters 22
while the framebuffer were in use. Accordingly, the “in use”
register 56 may track which of the framebuffers 22 remain in
use at any given time. “In use” register 56 may include a series
of'bits, where each bit corresponds to one of the framebuffers
22. Each bit of the “in use” register may be set to high if the
framebuffer is in use, or set to low if the framebuffer is not in
use. As with the electronic device 10, a total number of
framebuffers 22 in electronic device 54 may vary depending
on the number of graphics layers employed by electronic
device 54, and thus a total number of bits held by “in use”
register 56 may vary accordingly. For example, if electronic
device 54 employed five layers, each layer being triple-buft-
ered, then framebuffers 22 would include a total of 15 frame-

US 9,257,101 B2

7

buffers and “in use” register 56 would include at least 15 bits.
Accordingly, “in use” register 56 may contain as many bits as
necessary to at least equal the total number of framebuffers
22.

FIG. 4 depicts a method 58 with which the “in use” register
56 may prevent the final hardware frame processing stage (N)
20 from rendering into one of the framebuffers 22 if the
framebuffer is in use, while allowing hardware graphics pro-
cessing to progress as quickly as possible. Beginning with a
step 60, software running on the CPU 12 performs the final
software frame processing stage (N). As discussed above, a
frame may already have been assigned to a target framebuffer
A 24, framebufter B 26, or framebuffer C 28 prior to hardware
graphics processing. Rather than wait until the target frame-
buffer is not in use, the final software frame processing stage
(N) begins as soon as possible, sending initial frame data to
the GPU 16.

In a step 62, the GPU 16 begins the first hardware frame
processing stage (1) 18 regardless of whether the target
framebuffer A 24, framebuffer B 26, or framebuffer C 28
remains in use. When the first hardware frame processing
stage (1) 18 has completed, the GPU 16 may subsequently
perform any interim hardware frame processing stages prior
to final hardware frame processing stage (N) 20, also regard-
less of whether the target framebuffer remains in use.

A step 64 indicates that the GPU 16 or the CPU 12 may next
check whether the target framebuffer is in use. In one embodi-
ment, software running on the CPU 12 may be alerted that
frame data is ready for the final hardware frame processing
stage (N) 20. In another embodiment, the GPU 16 may man-
age the transfer of frame data to the final hardware frame
processing stage (N) 20 in lieu of the software. In either
embodiment, the software on the CPU 12 or the GPU 16 may
send the frame data to the final hardware frame processing
stage (N) 20 with acommand stream, which may indicate that
final hardware frame processing stage (N) 20 may not begin
until a bit from the “in use” buffer 56 corresponding to the
target framebuffer has cleared.

The command stream may include, for example, 32 bits to
correspond to an equal number of bits held by the “in use”
buffer 56, though the command stream may encompass any
appropriate size. Further, at least one bit corresponding to the
target framebuffer in the command stream may be set to
indicate to the final hardware frame processing stage (N) 20
that a corresponding bit held by the “in use” register 56 must
be clear before proceeding.

As indicated by a decision block 66, the final hardware
frame processing stage (N) 20 next compares the command
stream with the “in use” buffer 56. If the bit corresponding to
the target framebuffer in the “in use” buffer 56 indicates the
target framebufter is in use, the process may instead flow to a
step 68 and the final hardware frame processing stage (N) 20
may begin immediately. In accordance with the decision
block 66, if the bit corresponding to the target framebufter in
the “in use” buffer 56 indicates the target framebuffer is in
use, the process may instead flow to a step 70. In the step 70,
the final hardware frame processing stage (N) 20 is deferred
until the buffer is no longer in use (i.e., when the next vertical
blanking interrupt 34 occurs).

FIGS. 5-8 depict timing diagrams illustrating a sequence of
processing a series of frames of graphics. FIG. 5 depicts a
particular timing diagram 72, to be discussed in greater detail
below. However, it should be noted that the features enumer-
ated 74-90 remain common to all FIGS. 5-8. In a legend 74, a
particular frame is identified by a number above a horizontal
line punctuated by vertical lines, and a particular target frame-
buffer is identified beneath the horizontal line. A series of

25

30

40

45

8

steps 76 for processing a frame of graphics is juxtaposed
against VBL heartbeats 78 and time 80. Assuming a display
refresh rate of 60 Hz, each VBL heartbeat 78 represents
approximately 16.67 ms of time 80.

The series of steps 76 include a first software frame pro-
cessing stage (1) 82, a final software frame processing stage
(N) 84, a first hardware frame processing stage (1) 86, a final
hardware frame processing stage (N) 88, and a display stage
90. Each of the series of steps 76 corresponds to those previ-
ously discussed above.

The timing diagram 72 of FIG. 5 illustrates one potentially
negative result which may occur if the methods depicted in
the flowcharts 44 and 58 are not employed. Looking first to a
point 92, a frame 1 with a target framebuffer A 24 is developed
in the first software frame processing stage (1) 82 following
aninitial VBL heartbeat (numbered 0). At a point 94, because
the method of the flowchart 44 is not employed, the final
software frame processing stage (N) 84 will not begin to
process frame 1 until after anext VBL heartbeat (numbered 1)
occurs. The final software frame processing stage (N) 84
completes and initial frame data for frame 1 is sent to first
hardware frame processing stage (1) 86 at a point 96. At a
point 98, the final hardware frame processing stage (N) 88
begins, and upon completion of the hardware frame process-
ing stage (N) 88, a completed frame 1 data is rendered into the
target framebuffer A 24. A point 100 represents the point at
which the display controller 30 reads the contents of frame-
buffer A 24 for the display step 90, during which time the
framebuffer A 24 is in use.

Looking next to a point 102, a frame 2 with a target frame-
buffer B 26 is developed in the first software frame processing
stage (1) 82 following the VBL heartbeat numbered 1. How-
ever, as indicated by a balloon 104, the first software frame
processing stage (1) 82 does not process frame 2 in a timely
manner before a next VBL heartbeat (numbered 2). Because
the method of the flowchart 44 is not employed, the final
software frame processing stage (N) 84 will begin only after
a next VBL heartbeat (numbered 3) occurs at a point 106.
Though subsequent frame processing stages may transfer
frame 2 immediately after completion at points 108 and 110,
the final hardware frame processing stage (N) 88 does not
render the completed frame 2 data into framebuffer B 26 until
after a subsequent VBL heartbeat (numbered 4). As indicated
by a balloon 112, the display controller 30 compensates by
repeating the display step 90 for frame 1 in the framebuffer A
24 until a next VBL heartbeat (numbered 5). When the VBL
heartbeat numbered 5 occurs at a point 114, the display con-
troller 30 subsequently reads the contents of framebuffer B 26
to display the frame 2.

Points 116 represent subsequent frames 3, 4, 5, 6, which are
developed and targeted to the framebuffer C 28, the frame-
buffer A 24, the framebuffer B 26, and the framebuffer C 28,
respectively. In the timing diagram 72, the subsequent frames
at points 116 execute as desired.

Turning to FIG. 6, a timing diagram 118 illustrates another
potentially negative result which may occur if the methods
depicted in flowcharts 44 and 58 are not employed. Because
elements of the timing diagram 118 numbered 74-100 are
addressed in the above discussion of the timing diagram 72 of
FIG. 5, the discussion of elements numbered 74-100 is not
reproduced in the discussion of FIG. 6 below.

Looking first to a point 120, a frame 2 with a target frame-
buffer B 26 is developed in the first software frame processing
stage (1) 82 following a VBL heartbeat numbered 1. Because
the method of the flowchart 44 is not employed, upon the
occurrence of a next VBL heartbeat (numbered 2) at a point
122, the final software frame processing stage (N) 84 begins.

US 9,257,101 B2

9

As noted by a balloon 124, the final software frame process-
ing stage (N) 84 does not complete the processing of frame 2
in a timely manner. As a result, at points 126 and 128, the sum
ofall processing time for the final software frame processing
stage (N) 84, first frame processing stage 1 86, and final frame
processing stage N 88 may exceed the total processing time
afforded by triple-buffering. Thus, as indicated by a balloon
130, the display controller 30 compensates by repeating the
display step 90 for frame 1 in the framebuffer A 24 until a next
VBL heartbeat (numbered 5). When the VBL heartbeat num-
bered 5 occurs at a point 132, the display controller 30 sub-
sequently reads the contents of the framebuffer B 26 to dis-
play frame 2.

At a point 134, a frame 3 with a target framebuffer C 28 is
developed, which continues as desired to the display step 90
atapoint 136. A subsequent frame 4 with a target framebuffer
A 24 is developed in the first software frame processing stage
(1) 82 at a point 138. However, because the method of the
flowchart 58 is not employed, the final software frame pro-
cessing stage (N) 84 may not begin because the target frame-
buffer A 24 is in use. As indicated by a balloon 140, the frame
4 may be dropped as a result. Instead, as depicted at point 142,
a frame 5 may be developed having the target framebuffer A
24. Though subsequent frames at points 144 may continue to
execute as desired, the same problem may subsequently reoc-
cur.
FIG. 7 depicts a timing diagram 146, which demonstrates
that employing the methods depicted in the flowcharts 44 and
58 may solve potential problems illustrated in the timing
diagrams 72 and 118 of FIGS. 5 and 6. Because elements of
the timing diagram 146 numbered 74-90 are addressed in the
above discussion of the timing diagram 72 of FIG. 5, the
discussion of elements numbered 74-90 is not reproduced in
the discussion of FIG. 7 below.

Looking first to a point 148, a frame 1 with a target frame-
buffer A 24 is first developed in the first software frame
processing stage (1) 82 following a VBL heartbeat numbered
0. When the stage is complete, software running on the CPU
12 issues a command indicating that the frame 1 is available
for further processing. Accordingly, the final software frame
processing stage (N) begins at a point 150, without waiting for
a next VBL heartbeat (numbered 1). At a point 152, the first
hardware frame processing stage (1) 86 begins, upon comple-
tion of which the final hardware frame processing stage (N)
88 may begin at a point 154. When the final hardware frame
processing stage (N) 88 completes, completed frame 1 data is
rendered into the target framebuffer A 24. At a subsequent
VBL heartbeat numbered 3, the display step 90 begins and the
display controller 30 reads the contents of the framebuffer A
24 for display on the display 32.

A point 158 represents the development of a frame 2 with
a target framebuffer B 26 in the first software frame process-
ing stage (1) 82, which begins following the VBL heartbeat
numbered 1. As indicated by a balloon 160, the first software
frame processing stage (1) 82 does not complete in a timely
manner, finishing after the VBL heartbeat numbered 2. How-
ever, because the method of the flowchart 44 is employed, the
final software frame processing stage (N) 84 may begin pro-
cessing the frame 2 as soon as the first software frame pro-
cessing stage (1) 82 completes and issues the command indi-
cating the frame 2 is available for further processing. Thus,
the final software frame processing stage (N) 84 begins at
point a 162, without waiting for a subsequent VBL heartbeat.

Because the final software frame processing stage (N) 84
may begin processing the frame 2 as soon as the first software
frame processing stage (1) 82 completes at the point 162, the
first hardware frame processing stage (1) 86 may begin at a

40

45

50

55

10

point 164 and the final hardware frame processing stage (N)
88 may begin at a point 166. Accordingly, because all of the
series of steps 76 other than the display step 90 take place
before a VBL heartbeat numbered 4, when the VBL heartbeat
numbered 4 begins at a point 168, the display step 90 may
begin for the frame 2.

Points 170 represent subsequent frames which are devel-
oped and targeted to the framebuffer C 28, the framebuffer A
24, the framebuffer B 26, the framebuffer C 28, and the
framebuffer A 24, respectively. In the timing diagram 146, the
subsequent frames at points 170 execute as desired.

Turning to FIG. 8, a timing diagram 172 illustrates how
employing the methods depicted in the flowcharts 44 and 58
may solve other potential problems illustrated in the timing
diagrams 72 and 118 of FIGS. 5 and 6. Because elements of
the timing diagram 172 numbered 74-90 are addressed in the
above discussion of the timing diagram 72 of FIG. 5, the
discussion of elements numbered 74-90 is not reproduced
below. Moreover, because elements of the timing diagram
172 numbered 148-156 are addressed in the above discussion
of timing diagram 146 of FIG. 7, the discussion of elements
numbered 74-90 is not reproduced below.

Looking first to a point 174, a frame 2 with a target frame-
buffer B 26 is developed in the first software frame processing
stage (1) 82, following a VBL heartbeat numbered 1. A point
176 illustrates that the final software frame processing stage
(N) 84 begins immediately after the first software frame pro-
cessing stage (1) ends. As indicated by a balloon 178, the final
software frame processing stage (N) 84 does not complete in
atimely manner. The processing of the frame 2 progresses to
the first hardware frame processing stage (1) 86 at a point 180
and the final hardware frame processing stage (N) 88 at a
point 182, but the final hardware frame processing stage (N)
88 does not complete rendering into the target framebufter B
26 before the VBL heartbeat numbered 4. As a result, the
display control 30 compensates by continuing to display the
frame 1 from the framebuffer A 24. At a point 186, the display
step 90 begins for the frame 2 from the framebuffer B 26.

A point 188 represents the development of a frame 3 with
atarget framebufter C 28. As illustrated in the timing diagram
172, the frame 3 is executed as desired, reaching the display
step 90 at a point 190 immediately following a VBL heartbeat
numbered 6.

At apoint 192, the development of a frame 4 with a target
framebuffer A 24 begins. Though the frame 4 targets the
framebuffer A 24, and the framebuffer A 24 is currently in
use, the timing diagram 172 provides a different outcome
from that of the timing diagram 118 of FIG. 6. Because the
methods depicted in the flowcharts 44 and 58 are employed,
the final software frame processing stage (N) 84 begins pro-
cessing the frame 4 at a point 194 regardless of whether
framebuffer A 24 is in use.

The frame 4 also begins the first hardware frame process-
ing stage (1) 86 regardless of whether the framebuffer A 24 is
in use. At the point when the final hardware frame processing
stage (N) 88 begins processing the frame 4, the framebuffer A
24 is no longer in use, and the final hardware frame processing
stage (N) 88 may thus undertake processing the frame 4. At a
point 196, the frame 4 reaches the display step 90 in the
framebuffer A 24. Unlike the result of the timing diagram 118,
because the methods of the flowcharts 44 and 58 are
employed, the frame 4 is not dropped in the timing diagram
172.

While the invention may be susceptible to various modifi-
cations and alternative forms, specific embodiments have
been shown by way of example in the drawings and have been
described in detail herein. However, it should be understood

US 9,257,101 B2

11

that the invention is not intended to be limited to the particular
forms disclosed. Rather, the invention is to cover all modifi-
cations, equivalents, and alternatives falling within the spirit
and scope of the invention as defined by the following
appended claims.
What is claimed is:
1. A method of processing a frame of image data for display
on an electronic display, comprising:
preparing an entire frame of image data targeted to be
written into a first framebuffer of at least two frame-
buffers, wherein the entire frame of image data is con-
figured to be displayed on the electronic display for
hardware graphics processing in a software frame pro-
cessing stage when the first framebuffer is being
accessed by the electronic display to display another
entire frame of image data, each of the at least two
framebuffers capable of storing the entire frame of
image data or the other entire frame of image data;

performing a first hardware frame processing stage on the
entire frame of image data when the first framebuffer is
being accessed by the electronic display to display the
other entire frame of image data; and

writing the entire frame of image data into the first frame-

buffer only when the first framebuffer is not being
accessed by the electronic display to display the other
entire frame of image data.

2. The method of claim 1, wherein rendering the entire
frame of image data comprises checking whether the first
framebuffer is being accessed by the display to display the
other entire frame of image data with a register configured to
track when the first framebuffer is being accessed by the
electronic display to display the other entire frame of image
data.

3. The method of claim 1, wherein preparing the entire
frame of image data for hardware graphics processing in the
software frame processing stage comprises using software
running on one or more the central processing units.

4. The method of claim 1, wherein performing the first
hardware frame processing stage comprises using one or
more hardware graphics processors.

5. The method of claim 4, wherein performing the first
hardware frame processing stage comprises performing pre-
render hardware tile acceleration.

6. The method of claim 4, wherein performing the final
hardware frame processing stage comprises performing hard-
ware rendering to the first framebuffer.

7. A system comprising:

a display;

memory circuitry comprising at least two framebuffers,

each of the at least two framebuffers capable of storing
an entire frame of image data configured to be displayed
on the display;

display control circuitry communicably coupled to the dis-

play and the memory circuitry, the display control cir-
cuitry configured to send pixel data that corresponds to
the entire frame of image data from the at least two
framebuffers to the display;

at least one central processing unit communicably coupled

to the display control circuitry, the at least one central
processing unit being configured to run software for a
final software frame processing stage when a first frame-
buffer of the at least two framebuffers is being accessed
by the display to display another entire frame of image
data; and

25

30

40

45

50

60

12

at least one graphics processor communicably coupled to
the memory circuitry and the at least one central pro-
cessing unit, the at least one graphics processor being
configured to conduct frame processing operations not
involving writing the entire frame of image data to the
first framebuffer when the first framebuffer is being
accessed by the display and being configured to write the
entire frame of image data into the first framebuffer only
when the first framebuffer is not being accessed by the
display to display the other entire frame of image data.
8. The system of claim 7, comprising a register communi-
cably coupled to the at least one graphics processor, the
register being configured to track whether the first frame-
buffer is being accessed by the display to display the other
entire frame of image data.
9. The system of claim 7, wherein the at least two frame-
buffer comprises at least three framebuffers, each of which
may serve as the first framebuffer.
10. The system of claim 7, wherein the first framebuffer is
configured to provide hardware event interrupt notifications
to software running on the at least one central processing unit.
11. The system of claim 7, wherein the first framebuffer is
configured to be monitored by circuitry communicably
coupled to the graphics processor and the display control
circuitry.
12. The system of claim 7, comprising at least one of a
network interface, an expansion slot, or non-volatile storage,
or any combination thereof.
13. The system of claim 7, wherein the system comprises at
least one of a media player, a cellular phone, or a personal data
organizer, or any combination thereof.
14. A method of displaying a frame of pixels on an elec-
tronic display, comprising:
preparing an entire frame of image data targeted to be
written into a first framebuffer of at least two frame-
buffers, wherein the entire frame of image data is con-
figured to be displayed on the electronic display for
hardware graphics processing when the first framebuffer
is being accessed by the electronic display to display
another entire frame of image data, each of the at least
two framebuffers capable of storing the entire frame of
image data or the other entire frame of image data;

conducting hardware frame processing not involving writ-
ing the entire frame of image data to the first framebuffer
when the first framebuffer is being accessed by the elec-
tronic display to display the other entire frame of image
data; and

after conducting hardware frame processing not involving

writing the entire frame of image data to the first frame-
buffer, conducting frame processing involving writing
the entire frame of image data to the first framebuffer
only when the first framebuffer is not being accessed by
the electronic display to display the other entire frame of
image data.

15. The method of claim 14, comprising deferring conduct-
ing frame processing stages involving writing the entire
frame of image data to the first framebuffer on the entire
frame of image data until after a vertical blanking interrupt if
the first framebuffer is being accessed by the electronic dis-
play to display the other entire frame of image data.

#* #* #* #* #*

